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ABSTRACT

The semiclassical method of adiabatic switching ( AS) is applied to calculate highly
excited vibrational energy levels of an incommensurate two dimensional coupled oscillators
system. The reference Hamiltonian chosen consists of locally fitting a Hamiltonian not by two
uncoupled harmonic oscillators but by a Stickel Hamiltonian. At low energy this Stackel
Hamiltonian is an excellent separable approximation to the tull Hamiltonian and this has
been quantized for the first time. The difference between the full and the Stiackel Hamiltonian
18 turned on adiabatically. Results obtained by using the Stickel Hamiltonian as a reference
Hamiltonian are in excellent agreement with exact quantumn variational results and are a
significant improvement over the results when the reference Hamiltonian is taken to be two
uncoupled oscillators. By using this Stickel approach the computational effort to calculate
the vibrational energy level is drastically reduced The Stickel approximation to numerical

potentials by local and global fitting is also discussed.



LINTRODUCTION

Recent developments in laser spectroscopy and laser chemistry have attracted a great
deal of interest in understanding the dynamics of vibrationally excited states of polyatomic
molecules. This has stimulated efforts to develop methods for calculating the energy levels in
the high energy region where anharmonicity is significant and modes are coupled. At present
calculations are done with two general methods, viz. the exact quantum variational methods
(EQ) and semiclassical (SC) methods. The EQ method is exact but becomes computationally
intractable at an energy well below the dissociation energy. The accuracy and efficiency of
variational methods are highly sensitive to the choice of basis functions and coordinates. The
computation time for the EQ method scales as N3 with the number of basis functions N. If in
addition, the numerical integration is also required to evaluate the matrix elements, a
significant portion of the total computational time may be involved in setting up the

Hamiltonian matrix.

In view of the computational difficulties involved with EQ method much attention has
been devoted to developing alternate methods to calculate the eigenvalues of coupled
oscillators. Several methods have been developed to find the eigenvalues for two dimensional
systemns. The vast literature on this subject has been summarized in the two recent review

articles.1-2

Various methods+-2% have been developed to quantize near—integrable classical
Hamiltonians. Most of these methods are based on the well known Einstein—Brillouin—Keller
(EBK) quantization theory. The basic idea of adiabatic switching (AS) is due to Ehernfest.3
Use of the adiabatic hypothesis of classical mechanics to locate trajectories with quantized
values of the good actions in near—integrable systems was first proposed by Solev'ev? who
made the first attempt to numerically implement this approach. In the past the AS method

has been applied in atomic physics? 20 25, optics8, chemical physics!o-19 and nuclear physics.32
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Skodje et al.!2 and Grozdanov et al.!5-16 extended and tested the AS method and
demonstrated how it can be efficiently employed in problems related to chemical physics.
Patterson!3 applied the AS method to a triply degenerate anharmonic oscillator— Hecht
Hamiltonian suitable for octahederal and tetrahedral symmetry. Johnson!3-14 has made a
systematic study to determine the best form of the switching function to maximize the rate of
convergence of the energy to its adiabatic limit. The first application of AS in atomic physics
was made by Grozdanov and Solev'ev? who calculated the first three energy levels of
hydrogen atom in crossed electric and magnetic fields. The first comprehensive application of
AS in atomic physics was made by Saini and Farrelly2? who applied the AS method to
calculate the energies of hydrogen atom in strong magnetic fields including the chaotic region
of the phase space. Saini et al.25 successfully applied the AS method to calculate the energy
levels for the hydrogen atom in the static, uniform collinear magnetic and electric fields. The
first application of AS method to calculate the vibrational energy levels for a three
dimensional realistic potential applicable to 302 has been made by Saini et al.2¢ who have

also calculated the highly excited states of 3—, 4— and 5—dimensions Hamiltonians systems.

A basic problem in applying AS or self—<onsistent—field (SCF) methods is the choice of
integrable reference Hamiltonian (usually, but not necessarily, separable) whose classical
dynamics should be qualitatively as close as possible to the full Hamiltonian. The ability to
apply the AS method successfully rests on being able to chose a reference zeroth order
Hamiltonian in such a way as to define a good set of action variables. Whenever the potential
18 given in a numerical form or as a polynomial fit to experimental data it will be next to
impossible to define a good set of initial quantized actions. This is the main drawback of the
AS method and is a major impediment to studying a realistic molecular potentials in spité of
the great success?4 in applying the AS method to 802 represented by a realistic potential. To
overcome this problem which is fundamental not only in the AS method but also in the SCF
method, we present here a new approach in defining the zeroth order reference Hamiltonian

which for low energy is an excellent separable approximation for the full Hamiltonian.
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In this paper we have applied a Hulst26 method of finding a separable Hamiltonian (so
called Stackel Hamiltonian) which at the low energy is an excellent approxiamation to the
full Hamiltonian. It may be mentioned that since Stickel Hamiltonian is separable, it is
integrable and its classical dynamics is regular. It is also possible to have a non—separable but
integrable Hamiltonian.20 It is well known that Hamilton—Jacobi equation is separable in a
restricted number of special cases, the so called Stickel potentials. The method used is based
upon the procedure pioneered by Hulst26 and consists of locally fitting a potential close to an
equilibrium point by a Stickel potential in elliptical coordinates instead of by a harmonic
oscillator. Such a fitting is typically of significantly higher order than quadratic. Using this
method Hulst28 obtained excellent agreement with numerically calculated orbits. Recently
Zeeuw and his co—workers28-3! considered the more interesting problem of obtaining a global
fit to a non-separable (and non—integrable) potential by a Stéckel potential. This procedure
generates a coordinate system in which the true potential must separate. As a first step
toward applying Stédckel approach in conjunction with AS method to a realistic potential in
the form of numerical tables, we apply in this paper, this technique to an incommensurate

two dimensional coupled oscillators system which has been studied by us previously using the

AS method.

In the earlier application of the AS to an incommensurate two—dimensional coupled
oscillators system!5, the reference Hamiltoinan was taken to be the two uncoupled oscillators
system. In that work it was found that most of the quantizing trajectories of the full
Hamiltonian are characterized by the deformed rectangular caustics and evolve adiabatically
from (initial) quantized trajectories of H with box-like (rectangular) caustics. Departures
from this behavior were expected for quantized trajectories corresponding to the highly
excited states but even at low energy the final state looks like a deformed box. This
necessitated the need of finding a new reference Hamiltonian H ¢ whose dynamics is as close

as possible to the full Hamiltonian H. In other words find an integrable reference Hamiltonian



H fin such a way that the perturbation (H — Href) 18 as small as possible.

The rest of the paper 13 organized as follows: In Sec. II we very briefly review the AS
method. In Sec. IIIA we apply the AS by taking reference Hamiltonian as two uncoupled
harmonic oscillators. In Sec. IIIB we apply Hulst26 technique of finding reference (Stickel)
Hamiltonian and use this for performing the AS. In Sec. IV we present results and

discussions. Finally Sec. V contains some concluding remarks.
II. TIME DEPENDENT ADIABATIC SWITCHING METHOD

The non-integrable Hamiltonian H is first divided into a sum of two parts. i.e.

where H_ ¢ 1s an integrable but not necessarily separable zeroth order Hamiltonian. This H ¢
should be so chosen so that its topology is as close as possible to the full Hamiltonian. [ H —
Href] is a remaining part of the Hamiltonian. s(t) is an adiabatic switching function which
changes slowly, smoothly and monotonically from 0 to 1 over the course of switching time T

and is given by

)=t S (2rYT) geiqr, (22)
T 2
with the property that
s(t)=0att=0; s(t)=1latt="T (2.3)

Using the time dependent Hamiltonian given by Eq. (2.1), we integrate Hamilton's equations

of motion over the time interval 0 to T for position coordinates and their conjugate momenta.
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Href 18 quantized by imposing EBK conditions which restricts the initial values of positions
and momenta to lie on invariant tori. If H s separable then generation of initial conditions
18 simple and straightforward and in most cases analytical. However, if Href 18 not separable,
then the generation of initial conditions on the zeroth order invariant in not trivial.20 By the
principle of adiabaticity at the end of switching i.e. t = T the actions will remain unchanged
and therefore the same EBK conditions specified at t = 0 will still be valid and thus the

energy 18 quantized.

The most suitable reference Hamiltonian is the one whose topology is as close as possible
to the full Hamiltonian. Thus the AS method requires deep insight of the classical dynamics
of the problem. If Hamiltonian is integrable but not separable one also need to know the
quantities which are approximately conserved for the full Hamiltonian. If the system is
degenerate then the number of single—valued integrals of motion is greater than the number
of degrees of freedom. In that event, the set of EBK quantization conditions cannot be chosen
in a unique way. In fact, they have been reduced. Thus there is a need to lift degeneracy in
the reference Hamiltonian. This is analogous to degenerate quantum system where more than

one eigenfunction corresponds to a particular eigenvalue.

HI. MATHEMATICAL FORMULATION

In this section we apply the AS method to study the model molecular Hamiltonain
systemn by using, (a) two uncoupled harmonic oscillators system as a reference Hamiltonian,

and (b) using the Stickel Hamiltonian as a reference Hamiltonian. We will discuss these

cases separately.

A Adiabatic Switching Using Two Harmonic Oscillators as Reference Hamiltonian



The molecular Hamiltonian studied by us is given by

9 - 2
H=%[p}2c+p§]+%[uxx2+u§y2]—[%]x[x2+(3b/a.)y ] (3.1)
with
w = 0.7, wy=1.3, ;a=0.03 b=0.1. (3.2)

The reference Hamiltonian used is a two uncoupled harmonic oscillator Hamiltonian and

18 given by
9
H0=1/2[[p;+wix2]+[p3+w§y2]} (3.3)
For the AS we have
H(t) = H, + s(t)[H - HO] (3.4)

The initial conditions sampling the reference Hamiltonian H _ are

)1 1/2

© 40 = [TX.L] Sin [Q,y] (3.5)
X,y

p)c:,y = [QIx,y Wy g ]1/2 Cos [ Oi)y] (3.6)

where the quantized action variables are given by

I +1/2, Ny =012 .. (3.7)

=n
xy Xy

and the angle variables are given by 0 ¢ 0}2 g < 27
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B Adiabatic Switching Using Stickel Hamiltonian as Reference Hamiltonian

In this section we will apply the technique pioneered by Hulst28 to find the separable
approximation to the full non—integrable Hamiltonian to calculate the time periods of the
planets. Since this technique is described in the astronomical literature2$, is therefore likely it
may be somewhat unfamiliar to the community of molecular physics. For this reason coupled
with the fact that the journal in which this technique appeared has gone out of publication we

outline the details of the method.

Let us define the elliptical coordinates ¢ and 5 defined by

x = ¢ Sinh( ) Cos(g) -k, (3.8a)
y = c Cosh( ) Sin(7) (3.8b)

where x = —k and y = * c define the position of the two foci. Along £ or 5 the local scale is

given by
2 2 2 2
] =R = c2( Cosh2¢ - SinZy) (3.9)

&)=

The angle € by which either of the coordinate curves are rotated in x and y directions is given

Si&

by the following equation

tan(e) = tanh(¢€) tan(y) (3.10)



Let us introduce the following quantities

x =c Sinh(€) -k, | (3.11a)

R_ = c? Cosh?(¢) (3.11b)
= 12 + 2k x, + xg

Pec?yr? (3.11c)

If we expand in powers of # and retain the terms only up to quadratic in 75, then Egs. (3.8) -

(3.11) can be written as

x = x - 1/2k + x )7 (3.12a)
y = Rcl)/% (3.12b)
R=R_-c* o . (3.12¢)

tan ¢ = (k +x) nRL/Z. (3.12d)

I{ E is the total energy and V(x,y) the potential energy then separation of variables is

possible if R and RV respectively are functions of ( and 7 and we get

2R = &(£) + X(p), (3.13a)
RV =-Ap(&)+ )] (3.13b)

From Eq. (3.1) the total potential is given by

Vix.y)=1/2 [w?( x2 4 w? y2] -%xa—b X y2 + ... (3.14)

where the dots stand for terms of the higher order in x and/or y2. We calculate the value of
of c and k in such a way that Eq. (3.13) is satisfied as closely as possible giving us an

approximation which is accurate for small amplitudes. Using Eqs. (3.12) and (3.14) we get
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RV = &(x )+ 7° 8y(x) (3.15)

where

El(xo) =-m¢) =R [wg X223 ] + . (3.16a)

X o]
—2 2[ 2 2( 2 _2a.3
62()(0):—7’ lz(n)zRo[wy—beo]-C [wxxo—géxo]
-R ng(k+x)—ax2(k+x)
o x70 0 o 0 (3.16b)

i n) can be a function of 5 alone if 52(x0) is a constant which means that at least the

coefficients of x  and xg in the Eq. (3.16a) are zero. On simplification we get

k[4w§—u§]—2b(2=0, (3.17a)
(3.17b)
k2[4w§—wz] 428 [wg—wz]—kﬂ( gb—a)=0,

These are two equations in two unknowns k and £ and thus can be solved for them and we

get
2 [(:’Z : j] (8180
2 E ‘”5 ; ‘(”zzb”a‘;’g - ] , (3.18b)
with 2-[2-2])” (3.18¢)
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It can be easily seen that the general form of the potential V(x,y) which satisfy the

condition of separability exactly and which has the expansion given by Eq. (3.14) is

2 4
2V0R0 + Wy " Adn)

2V = (3.192)
R, — c* Sin“(y)
£,(6) + fy(m)
__1 - % (3.19b)
€+
where R, 18 the function of x specified by Eq. (3.11). 2V = w}% xg -(22/3) xg + higher

order terms in x, and o) = 7)2 + higher order terms in 1/2. [n this work we also assume

that ¢(n) = Sing( 7) and in 2V neglect all the terms beyond third order to get
HE) = 2R, ; MO =-2R Y, (3:200)
Am) =-2Sin(n); o) = - o2 & Sin(), (3.20b)
Therefore the reference Hamiltonian which we use for the adiabatic switching is given by

2 4
2V, R0+wyl ()
R - c2 Sin%(n)

0

H, = 1/2[ p2 + p2 ] 4 (3.21)

y

Reference Hamiltonian given by Eq. (3.21) is called Stsickel Hamiltonian and it is

separable in { and n and is at very low energy an excellent separable approximation to the

full Hamiltonian given by Eq. (3.1).

Using the reference Hamiltonian given by Eq. (3.21) we apply the AS method on the

following Hamiltonian.
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H(t) = Hyppqer +5(Y) [H{ull - Hstackel] (3.222)
H(t).= Ho + s(t)( H- Hs) (3.22b)
C Quantization of Stickel Actions J ¢ and J 7

The generalized canonical momenta conjugate to position coordinates £ and 7 are given

1/2
pg= | MO+ OV E- 5] (3:232)

1/2
py= [ M1+ M) E+ 6] (3.23b)
where B 1s a separation constant and is obtained iteratively.

The quantization conditions are given as

&
TAE.f) = 2fp§ dé =(ng+1/2), ng=012 .., (3.24a)
3

where {; and ¢, are the classical turning points and are obtained as the roots of [ 4 (§) +
(YE-B]=0.

)
J(E B) =2 = = .
o(ErB) fpndn (n,+1/2) n =012, (3.24b)
N
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where 7, and 7 are the classical turning points and are obtained as the roots of [v(n) + &«
(m E + ] = 0. 1t is very easy to show that the mean periods Tf and T’? for small

amplitudes are given by

T, = 21 (3.25a)
X

T, =21 (3.25b)
7 y

Thus we see that for small amplitudes the time periods of H, and H_ are the same.
IV RESULTS AND DISCUSSIONS

The AS results for the energy spectrum up to classical escape energy at E = 11.4601 is
given in Table I. The AS results have been obtained by using two different reference
Hamiltonians namely, H_ and H_ given respectively by Egs. (3.3) and (3.21). H0 18 just two
uncoupled harmonic oscillators in Cartesian coordinates whereas HS 18 the Stickel
Hamiltonian and is an excellent separable approximation for the full Hamiltonian at low
energy. Initial conditions corresponding to H_and Hs are generated and then the difference of
[ H(t) - HO] and [ H(t) - H ] is turned on adiabatically. Each energy level is the result of 10
trajectories in the case of AS1 [ using H_ as reference Hamiltonian ] and 2 trajectories in case
of AS2 [ using Hs as a reference Hamiltonian ]. In both the cases the switching function used
18 given by Eq. (2.2) and Hamilton's equations were integrated for T= 400. It is clearly seen
from the Table I that the results obtained by AS2 are in better agreement with the exact
quantum (EQ) and the standard deviations are an order of magnitude smaller as compared to
that of AS1. In fact the AS2 results can be obtained to the same accuracy even with a single

trajectory. This means that computational effort involved with A52 method is 1/10 of the
AS1 method.



For each eigenvalue shown in Table I we have run a few representative "final" quantized
trajectories. These trajectories are obtained in the following manner. After the AS is complete
(i.e. the perturbation is fully turned on) the equations of motion continue to be integrated
with s(t) = 1 for all subsequent times t > T. This is equivalent to integrating Hamilton's
equations for the full Hamiltonian using the initial conditions (the values of positions and
momenta) obtained at the end of adiabatic switching i.2. at t = T. Here the term
"'quantizing'' should be understood in a very restricted manner in the sense of approximate
adiabatic invariance i.e these trajectories are not exactly quantized but are very close to
them. Most of the energy levels corresponding to Table I are characterized by trajectories
whose rectangular caustics have been deformed. A typical example is shown in Fig. 1. Figs.
1(a), 2(a), ..., 8(a) correspond to initial quantized trajectories corresponding to H_ [Eq. (3.3)]
with initial conditions given by Egs. (3.5) and (3.6). Figs. 1(b), 2(b), ..., 8(b) refers to initial
quantized trajectories corresponding to Hs [ Eq. (3.21) ] with initial conditions gotten from
Eqgs. (3.23) and (3.24). Figs. 1(c), 2(c), ..., 8(c) refer to the quantized trajectories obtained at
the end of adiabatic switching i.e. for the full Hamiltonian at t = T. The reason for getting
better energy levels by AS2 method with two trajectories and corresponding very small
standard deviations is obvious on comparing the caustics in Fig. 1. The topology of the
quantized trajectory corresponding to the full Hamiltonian shown in Fig. 1(¢) is much closer
to the topology corresponaing to H_ shown m Fig, 1{b) than to the topology of H, shown 1n
Fig. 1(a). The same trend is clearly seen in all the Figs. (2-7). The trajectory shown in Fig.
1(c) during its adiabatic evolution infinitely often passed through the weak classical resonance
zone (CRZ) but ended outside it at t = T. We also found quantizing trajectories affected by
weak resonances which ended inside the CRZ. This is depicted in Fig. 2(c). In this figure the
trajectory is close to a periodic orbit which would have been the case if exact resonant
conditions were met and lies inside the CRZ. Initial quantizing trajectories corresponding to
H_and H_ are shown in Figs. 2(a) and 2(b) respectively. If we compare Fig. 2(a) with Fig.

2(c) one can immediately see that the topology of the adiabatical torus (from Ho) has been
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deformed to a great extent. However, on comparing Fig. (2b) with (2c) one finds that the
topology of the initial torus (Hs) 18 almost the same as the final quantized state and thus the
AS method gives better energy with a small standard deviation. A more pronounced effect of
the (still relatively weak) resonance is shown in Fig. 3(c) — a final quantized trajectory
corresponding to energy level 42. Here the change in topology 1s obvious and caustics are no
longer a rectangular (i.e. a box) and that is why box quantization (Cartesian actions) with
H as the reference Hamiltonian no longer gives good results. ln this case no method based
upon box quantization can quantize states characterized by the trajectories shown in Fig.
3(c). For this reason semiclassical quantization of Birkhoff-Gustavsen—Normal-Form
(BGNF') also gives poor results. However, if we use Stickel quantization (i.e. chose reference
Hamiltonian to be HS) we get better results as the topology of final quantized trajectory (at t
= T) shown in Fig. 3(c) is almost the same as that of H_ shown in Fig. 3(b). For some of the
energy levels presented in Table I the corresponding final quantized trajectories are
characterized by strongly deformed rectangular caustics. A representative of such trajectories
is shown in Fig. 4(c) and corresponding initially quantized trajectories obtained by H_ and Hs
respectively are shown in Figs. 4(a) and 4(b). Again one finds that the topology of final
quantized trajectory [ Fig. 4(c) ] is closer to H, [Fig. 4(b)] than to H_ {Fig. 4(a)]. Many of the
states (e.g. 79, 80 and 84) with mild chaotic dynamics have also been observed. A typical
example of which is shown in Fig. 5 c) which has symptoms of mild chaos and will become
more chaotic if run for a lo'nger time. We get still meaningful energy levels because of the
existence of the approximate adiabatic invariant corresponding to a ''vague' torus —a term
coined by Reinhardt.33 Here adiabaticity has been violated. This is also reflected in the large
standard deviations obtained if we use box quantization. The reason is that the topology of
final quantized trajectory is entirely different from the one obtained by Ho' However, if we
use H3 as the reference Hamiltonian, the results are in good agreement with the EQ with a

smaller standard deviation.



States 81 and 82 are characterized by final quantized trajectories with horseshoe shaped
caustics as shown in Fig. 6(c). Caustics with such trajectories are typical of a 1:2 resonance
(Fermi resonance). Thus it is obvious that in the course of adiabatic switching the tori passed
through the separatnix and changed topology and at t = T it ended inside the CRZ exhibiting
Fermi resonance and thereby its adiabaticity has been violated. We note that these states (81
and 82) are nearly degenerate states. The violation of adiabaticity is also reflected in the
large standard deviation for these two states and an inversion of ordering energy levels is

obtained when compared to the perturbation results of BGNF

The last two states 84 and 85 shown in Table I have eigenvalues which lie above the the
classical escape energy 11.4601. Quantizing trajectories corresponding to these states are
shown in Figs. 7(c) and 8(c). Both these trajectories have been affected by some higher order
resonance. Notice that quantizing trajectory of Fig. 7(c) looks similar to that of Fig. 5(c) in
the sense that both trajectories show characteristics of mild chaos. However, the standard
deviation corresponding to the state of Fig. 7(c) is much smaller as compared to the state of
Fig. 5(c). The reason for this is that the quantized trajectory corresponding to Fig. 7(c) is
located in a thin chaotic layer associated with a higher order CRZ which occupies a much
smaller volume in phase space than the one associated with a low order CRZ in which a
trajectory of the type shown in Fig. 5(c) lies. As a result of this during adiabatic evolution a
state of the type shown in Fig. 5(c) has spent much more time in a region of phase space
where the dynamics is chaotic. Therefore, violation of adiabaticity is more severe for the

states of the type shown in Fig. 5(c) than for those shown in Fig. 7(c). This is reflected in the

larger standard deviations in the former.

V CONCLUDING REMARKS

A fundamental problem in applying the either AS or SCF methods is the choice of

coordinates in which it is most appropriate to approximately separate the problem. The
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Stickel fitting method presented in this paper can be used to define the curvilinear coordinate
system in which the problem most nearly separates and then these coordinates be used in the
AS and SCF methods. As an illustration of Stickel fitting we have successfully quantized a
non—degenerate two dimensional coupled oscillators system. This has been achieved by first
deriving a Stickel Hamiltonian (which s separable and hence integrable thus having regular
classical dynamics) which at low energy is an excellent separable approximation to the full
Hamiltonian. Then the Stickel Hamiltonian is quantized and initial conditions are generated
for this Hamiltonian. We then turn on the difference between the full Hamiltonian and the
Stickel Hamiltonian as an adiabatic perturbation. ‘The main advantage of this Stackel
approach is that virtually with a single trajectory we get very accurate energy levels. The
attraction of the AS method is that it is easy to obtain quantized trajectories irrespective of
the dimensionality of the problem. No initial searches, iterative procedures, Fourier analysis,

or perturbation expansions are required.

In our opinion the combination of Stéckel fitting and AS promises to be a very effective
way of treating realistic molecular potentials. Investigations along this line for
vibration—rotation (VR) interactions in triatomic and polyatomic molecules are being
studied. An important problem in understanding VR interactions is the calculation of VR
energies. For highly excited states the EQ methods become intractable. The EBK based
trajectory methods also are not feasible for polyatomic molecules as they completely break
down in the chaotic region in spite of the great success in applying the AS method to 50,
(with a realistic polynomial potential). However, it does break down for HQO and 03 which
have the same analytical form of the potential as S()2 but are resonant, if the reference
Hamiltonian is chosen to be three uncoupled harmonic oscillators. It has been shown in many
studies on both model and realistic molecular Hamiltonian systems as well as more recently
in quadratic Zeeman effect20 and hydrogen atom in parallel electric and magnetic fields that
the AS method works even in the mild chaotic region of the phase space. In view of this we

believe that the Stickel procedure in conjunction with AS is an efficient way of evaluating
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energies of polyatomic molecules where potentials are in the form of numerical tables or
plecewise analytic fits to experimental data. It may be pointed out that the present Stickel
procedure of finding the reference Hamiltonian is only applicable to two coupled
incommensurate oscillators systems. For the important case of Henon—Helies (1:1) and Fermi
resonance (2:1) work is in progress. We are also extending the Stickel procedure to

incommensurate three dimensional coupled oscillators system.
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TABLE T Energy levels of the Hamiltonian defined by Eq. (2.1).

a . ) N
state  (n, ny) E, AS1 SD1 EQ Eg AS2 Sh2 BGNF
36  (10,0) 8.0  7.7484 1.4(-3) 7.7423 7.7605 7.7417 2.4(-5) 7.7445
37 (1,5 8.2 7.8983 0.7(-3) 7.8996 8.0063 7.8996 2.0(-5) 7.9019
38 (3,4 83 7.9505 0.9(-3) 7.9524 8.0628 7.9525 3.2(-5) 7.9564
39 (5,3 8. 8.0024 1.3(-3) 8.0259 8.1277 8.0259 2.0(-5) 8.0315
4@ (7,2) 8.5 8.1194 0.9(-3) 8.1220 8.2064 8.1219 5.0(-5) 8.1288
41 (9,1) 8.6 8.2405 0.8(-3) 82435 8.3022 8.2431 0.1(-5) 8.2500
42 (11,0) 8.7  8.3902 1.0(-3) 8.3939 8.4163 8.3930 2.9(-5) 8.3973
74 (4,6) 11.6 10.8626 2.5(-3) 10.8657 11.1383 10.8662 3.3(-4) 10.8933

75 (6,5) 11.
76 (15,0) 11,
77 (8,4) 11.

3 )
10.9022 1.7(-3) 10.9053 1(1.1190 10.9059 8.7(-5) 10.9434
6.2(-4)

10.9336 1.8(-3) 10.9439 10.9963 10.9404 10.9627
10.9658 2.2(-3) 10.9700 11.4297 10.9703 2.8(-4) 11.0172
78 (10,3) 11.

79 (12,2) 12

11.0588 1.6(-3) 11.0612 (1.3211 11.0602 2.5(-3) 11.1166

[« B B N

(
11.1802 7.1(-3) 11.1856 11.4074 11.1882 4.0(-3) 11.2439

80  (14,1) 12,1 11.3376 1.1(-2) 11.3484 11.5102 11.3198 1.9 11.4014
81 (1,8) 12.1 11.4149 4.8(-3) 11.4129 11.6553 11.4179 7.5
82 (3,7) 12.2 11.4057 1.1(-2) 11.4158 11.7131 11.4110 5.2
83 (56) 12.
84 (17,5 12.

85  (16,0) 12.

11.4460
11.4765

11.4651 1.1(-3) 11.4703 11.8152 11.4714 1.4

)
)
)
-3) 11.4369
)
)
) 11.5305
)

(
(
(
11.4294 3.6(-3) 11.4325 11.7634 11.4321 1.1(-
(
(

N W

11.5519 1.8(-3) 11.5324 11.6296 11.5572 7.0 11.5902
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AS1
SD1
olf

AS2

SD2
BGNF

I

I

Energy of reference Hamiltonian Eq. (2.1).

Semiclassical AS energy level using H, as reference Hamiltonian.
Standard deviation for 10 trajectories corresponding to AS1.

Exact quantum variational results.

Energy of reference Hamiltonian i, Eq. (3.21), called Stickel
energy.

Semiclassical AS energy using B . Eq. (3.21), as a reference
Hamiltonian.

Standard deviation for two trajectories corresponding to AS2.
Energy level obtained from classical perturbation theory, ref. 34.

The quantum numbers n and ny are identical to n6 and n
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Fig.

Fig.

Fig.
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(b)

(c)

(a)

(b)

(a)
(b)
(c)

(a)
(b)

Initial quantized trajectory for H, [ Eq. (3.3) ]. Here n,

n =
y

Initial quantized trajectory for H, [ Eq. (3.21) ]. Here ng

FIGURE CAPTIONS

5 and E = 8.2;

nn = 5, and ES = 8.0063;

I
—
M

[
—

Initial quantized trajectory for the full Hamiltonian H [ Eq.

(3.1) ]. Here ng =
Same as Fig. 1(a) but with n_

Same as Fig. 1(b) but with nf 3,

1, n_= 5.

n

1
w
=

1l

1l
=
1]

4, and Eo = 8.3;
4, and Es = 8.0828;

Quantizing trajectory within some higher order resonance. Here I

= 3,
Same
Same
Same
ng =
Same
Same

Same

nE =
Same

Same

Irregular quantizing

n = 4.

n

as in Fig.
as 1n Fig.

as in Fig.

as 1n
as 1in
as in
4, n
n
as in

as in

Fig.
Fig.

1(a)
1(b)
2(c)

. 1(a)
. 1(b)
. 2(c)

1(a)
1(b)

but with n =11, n

y

but with né =11, n 0, and ES

Ui
except the order of resonance is

but withn_ =4, n_ = 6, and E
X y 0

but with n€ = 4, nn = 6, and ES

0, and E, =8.7;
=8.4163;

lower. Here

11.6;
11.1383;

except the order of resonance i1s lower. Here

but with n, = 14, n =1, E = 12.

N 0

but withn, - 14, n_ =1, and Es =

4 1

trajectory with apparent chaotic

characteristics. Here “{ =14, n_= L.

Same as in Fig. 1(a) but with n, =1, Ny = 8, and E
Same as in Fig. 1(b) but with ng = 1, n =8, and E_

Quantizing trajectory within 1:2 classical resonance

n

n
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1;
11.5102;

12.1;
11.6553;

zone. llere n§



I
I

Fig. 7. (a) Same as in Fig. 1(a) but with n =17, n, = 5, and E = 12.4;
(b) Same as in Fig. 1(b) but with ne = 7, n, = 5, and E = 11.8152;

(c) (Quantizing trajectory within 1:2 resonance zonec. llere ng = 7, n, =

3.
Fig. 8. (a) Same as in Fig. 1(a) but with n_ - 16, o, = 0, and B = 12.2;
(b) Same as in Fig. 1(b) but with ng = 16, n =0, and B, = 11.6296;

n
(c) Same as Fig. 7(c) but with he = 7, N, = 8.
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